转载

SQL优化原则-索引

1、使用索引来更快地遍历表。

缺省情况下建立的索引是非群集索引,但有时它并不是最佳的。在非群集索引下,数据在物理上随机存放在数据页上。合理的索引设计要建立在

对各种查询的分析和预测上。一般来说:

a.有大量重复值、且经常有范围查询( > ,< ,> =,< =)和order by、group by发生的列,可考

虑建立群集索引;

b.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;

c.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。索引虽有助于提高性能但不是索引越多越好,恰好相反过多的索引会导致系统低效。用户在表中每加进一个索引,维护索引集合就要做相应的更新工作。

2、在海量查询时尽量少用格式转换。

3、ORDER BY和GROPU BY使用ORDER BY和GROUP BY短语,任何一种索引都有助于SELECT的性能提高。

7、任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。

4、IN、OR子句常会使用工作表,使索引失效。如果不产生大量重复值,可以考虑把子句拆开。拆开的子句中应该包含索引。

Sql的优化原则2

1、只要能满足你的需求,应尽可能使用更小的数据类型:例如使用MEDIUMINT代替INT

2、尽量把所有的列设置为NOT NULL,如果你要保存NULL,手动去设置它,而不是把它设为默认值。

3、尽量少用VARCHAR、TEXT、BLOB类型

4、如果你的数据只有你所知的少量的几个。最好使用ENUM类型

5、正如graymice所讲的那样,建立索引。

以下是我做的一个实验,可以发现索引能极大地提高查询的效率:

我有一个会员信息表users,里边有37365条用户记录:

在不加索引的时候进行查询:

sql语句A:

select * from users where username like ’%许%’;

在Mysql-Front中的8次查询时长为:1.40,0.54,0.54,0.54,0.53,0.55,0.54共找到960条记录

sql语句B:

select * from users where username like ’许%’;

在Mysql-Front中的8次查询时长为:0.53,0.53,0.53,0.54,0.53,0.53,0.54,0.54共找到836条记录

sql语句C:

select * from users where username like ’%许’;

在Mysql-Front中的8次查询时长为:0.51,0.51,0.52,0.52,0.51,0.51,0.52,0.51共找到7条记录

为username列添加索引:

create index usernameindex on users(username(6));

再次查询:

sql语句A:

select * from users where username like ’%许%’;

在Mysql-Front中的8次查询时长为:0.35,0.34,0.34,0.35,0.34,0.34,0.35,0.34共找到960条记录

sql语句B:

select * from users where username like ’许%’;

在Mysql-Front中的8次查询时长为:0.06,0.07,0.07,0.07,0.07,0.07,0.06,0.06共找到836条记录

sql语句C:

select * from users where username like ’%许’;

在Mysql-Front中的8次查询时长为:0.32,0.31,0.31,0.32,0.31,0.32,0.31,0.31共找到7条记录

在实验过程中,我没有另开任何程序,以上的数据说明在单表查询中,建立索引的可以极大地提高查询速度。

另外要说的是如果建立了索引,对于like ’许%’类型的查询,速度提升是最明显的。因此,我们在写sql语句的时候也尽量采用这种方式查询。

对于多表查询我们的优化原则是:

尽量将索引建立在:left join on/right join on ... +条件,的条件语句中所涉及的字段上。

多表查询比单表查询更能体现索引的优势。

6、索引的建立原则:

如果一列的中数据的前缀重复值很少,我们最好就只索引这个前缀。Mysql支持这种索引。我在上面用到的索引方法就是对username最左边的6个字符进行索引。索引越短,占用的

磁盘空间越少,在检索过程中花的时间也越少。这方法可以对最多左255个字符进行索引。

在很多场合,我们可以给建立多列数据建立索引。

索引应该建立在查询条件中进行比较的字段上,而不是建立在我们要找出来并且显示的字段上

7、限制索引的使用的避归。

7.1IN、OR子句常会使用工作表,使索引失效。

如果不产生大量重复值,可以考虑把子句拆开。拆开的子句中应该包含索引。这句话怎么理解决,请举个例子

例子如下:

如果在fields1和fields2上同时建立了索引,fields1为主索引

以下sql会用到索引

select * from tablename1 where fields1=’value1’ and fields2=’value2’

以下sql不会用到索引

select * from tablename1 where fields1=’value1’ or fields2=’value2’

7.2使用IS NULL 或IS NOT NULL

使用IS NULL 或IS NOT NULL同样会限制索引的使用。因为NULL值并没有被定义。在SQL语句中使用NULL会有很多的麻烦。因此建议开 发人员在建表时,把需要索引的列设成NOT NULL。如果被索引的列在某些行中存在NULL值,就不会使用这个索引(除非索引是一个位图索引,关于位图索引在稍后在详细讨论)。

7.3使用函数

如果不使用基于函数的索引,那么在SQL语句的WHERE子句中对存在索引的列使用函数时,会使优化器忽略掉这些索引。下面的查询不会使用索引(只要它不是基于函数的索引)

select empno,ename,deptno

from emp

where trunc(hiredate)='01-MAY-81';

把上面的语句改成下面的语句,这样就可以通过索引进行查找。

select empno,ename,deptno

from emp

where hiredate<(to_date('01-MAY-81')+0.9999);

7.4比较不匹配的数据类型

比较不匹配的数据类型也是比较难于发现的性能问题之一。注意下面查询的例子,account_number是一个VARCHAR2类型,在account_number字段上有索引。下面的语句将执行全表扫描。

select bank_name,address,city,state,zip

from banks

where account_number = 990354;

Oracle可以自动把where子句变成to_number(account_number)=990354,这样就限制了索引的使用,改成下面的查询就可以使用索引:

select bank_name,address,city,state,zip

from banks

where account_number ='990354';

特别注意:不匹配的数据类型之间比较会让Oracle自动限制索引的使用,即便对这个查询执行Explain Plan也不能让您明白为什么做了一 次“全表扫描”。

补充:

1.索引带来查询上的速度的大大提升,但索引也占用了额外的硬盘空间(当然现在一般硬盘空间不成问题),而且往表中插入新记录时索引也要随着更新这也需要一定时间.

有些表如果经常insert,而较少select,就不用加索引了.不然每次写入数据都要重新改写索引,花费时间;

这个视实际情况而定,通常情况下索引是必需的.

2.我在对查询效率有怀疑的时候,一般是直接用Mysql的Explain来跟踪查询情况.

你用Mysql-Front是通过时长来比较,我觉得如果从查询时扫描字段的次数来比较更精确一些.

聚集索引和非聚集索引的区别

聚集索引:物理存储按照索引排序

非聚集索引:物理存储不按照索引排序

先看看聚集索引,在某种意义上,每个表都需要创建一个(只能创建一个)聚集索引(clustered index),聚集索引所定义的列叫做聚集键(clustering key),创建一个聚集索引,物理存储时,Sql Server会根据聚集键(再强调一次,每个表都只能有一个聚集键)排列表中的数据,正是由于表中的数据只能按照一种顺序排列,所以每个表只能有一个聚集索引。聚集索引的叶子层就是实际数据。通常,聚集索引被定义为表的主键。

而非聚集索引,和聚集索引相反,不需要表中的数据按照索引的顺序排列,索引可以根据访问数据的具体需求,创建多个非聚集索引。理论上讲,我们可以为一个表创建多达249个非聚集索引。非聚集索引的叶子层不是具体数据,而是指向具体数据的一个指针。

以我们常用的工具书《新华字典》为例,表中的数据,就是字典中的字条。我们知道新华字典提供了两种查字条的方法,可以认为就是两个索引,一个是音序查字法,一个是部首笔画查字法(在这里我们忽略难检字笔画查字法),由于字典中的字存放的顺序,就是按照音序排序法排的,根据前面的定义,音序就是字典这个表的“聚集索引”而相对的,部首笔画,则是非聚集索引。

优势与缺点聚集索引:插入数据时速度要慢(时间花费在“物理存储的排序”上,也就是首先要找到位置然后插入) 查询数据比非聚集数据的速度快 。

 
文章最后发布于: 2012-07-10 12:53:18
展开阅读全文
0 个人打赏
私信求帮助

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 鲸 设计师: meimeiellie

分享到微信朋友圈

×

扫一扫,手机浏览